Process holds promise for production of synthetic gasoline from carbon dioxide
A novel "co-catalyst" system using inexpensive, easy to fabricate carbon-based nanofiber materials efficiently converts carbon dioxide to carbon monoxide, a useful starting-material for synthesizing fuels. The findings have been published online in advance of print in the journal Nature Communications.
"I believe this can open a new field for the design of inexpensive and efficient catalytic systems for the many researchers already working with these easily manipulated advanced carbon materials," says Amin Salehi-Khojin, UIC professor of mechanical and industrial engineering and principal investigator on the study.
Researchers have spent decades trying to find an efficient, commercially viable way to chemically "reduce," or lower the oxidation state, of carbon dioxide. The UIC researchers approached the problem in a new way.
Although reducing carbon dioxide is a two-step process, chemists had commonly used a single catalyst, Salehi-Khojin said. He and his colleagues experimented with using different catalysts for each step.
In previous work, Salehi-Khojin used an ionic liquid to catalyze the first step of the reaction, and silver for the final reduction to carbon monoxide. The co-catalyst system was more efficient than single-catalyst carbon dioxide reduction systems, he said.
But silver is expensive. So he and his coworkers set out to see if a relatively new class of metal-free catalysts -- graphitic carbon structures doped with other reactive atoms -- might work in place of the silver.
They tried a common structural material, carbon nanofibers, which was doped with nitrogen, as a substitute for silver to catalyze the second step.
When these carbon materials are used as catalysts, the doping atoms, most often nitrogen, drive the reduction reaction. But, through careful study of this particular reaction, the researchers found that it was not the nitrogen that was the catalyst.
"It was the carbon atom sitting next to the dopant that was responsible," said Mohammad Asadi, a UIC graduate student who is one of two first-authors of the study.
"We were very surprised at first," Asadi said.
But as they continued to characterize the reaction it became clear not only that carbon was catalyzing the reaction, but that the co-catalyst system was more efficient than silver, "showing substantial synergistic effects," Asadi said.
Bijandra Kumar, UIC research scholar and the other first-author of the paper, said the team "uncovered the hidden mechanism" of the co-catalyzed reaction, which has "opened up a lot of options for designing inexpensive and efficient catalyst system for carbon dioxide conversion."
"Further, one can imagine that using atomically-thin, two-dimensional graphene nano-sheets, which have extremely high surface area and can easily be designed with dopant atoms like nitrogen, we can develop even far more efficient catalyst systems," Kumar said.
"If the reaction happened on the dopant, we would not have much freedom in terms of structure," said Salehi-Khojin. In that case, little could be done to increase the efficiency or stability of the reaction.
But with the reaction happening on the carbon, "we have enormous freedom" to use these very advanced carbon materials to optimize the reaction, he said.
The researchers hope that their research leads to commercially viable processes for the production of syngas and even gasoline from carbon dioxide.
Co-authors are Davide Pisasale, Suman Sinha-Ray, Jeremiah Abiade and Alexander Yarin from UIC and Brian Rosen and Richard Haasch from the University of Illinois at Urbana-Champaign.
The study was supported in part by UIC. The work was carried out in part at the Frederick Seitz Materials Research Laboratory at the Urbana-Champaign campus.
Welcome to SUV System Ltd!
SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.
We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.
SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com
Electronic Components distributor:http://www.suvsystem.com
Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html
IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html
LED Distributor:http://www.suvsystem.com/l/LED-1.html
Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html
Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html
Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html
Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html
SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc
we are focus on the following fields,and hope we can help you.
Texas Instruments(TI) IC PANASONIC Industrial IC NS IC TOSHIBA Diodes Schottky Diodes Diodes ELPIDA IC Transistors Freescale components LINEAR IC NXP Diodes NEC Transistors Fairchild Semiconductor Transistors Voltage Regulators Transistors Fast Recovery Diodes Xilinx IC MAXIM IC ON Transistors Thin Film Resistors High Precision Resistors Microchip IC TOSHIBA Transistors Vishay resistors BB IC Metal Can Packages Transistors Current Sensors Resistors IR transistor Transistors Resistor Networks Military IC Low Ohmic Resistors TI IC Multi-units Transistors Resistor Arrays Infineon Technologies Transistors SANYO IC Diodes Inc Atmel IC Chip Ferrite Beads
http://www.suvsystem.com/a/7532.aspx
No comments:
Post a Comment